Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Psychol ; 14: 1093875, 2023.
Article in English | MEDLINE | ID: covidwho-2269365

ABSTRACT

Background: Understanding the compliance of infected individuals and the psychological process underlying compliance during pandemics is important for preventing and controlling the spread of pathogens. Our study investigated whether fundamental social motives mediate the relationship between having infectious disease and compliance. Methods: An online survey was conducted in March 2020, during the severe phase of the COVID-19 outbreak in China to collect data from 15,758 participants. The survey comprised self-report questionnaires with items pertaining to current symptoms (COVID-19 symptoms, other symptoms or no symptoms), the Fundamental Social Motive Inventory, and measures of compliance. Correlation analysis, linear regression analysis, and structural equation model were used for data analysis. Results: The participants with COVID-19 symptoms had lower levels of compliance than those without symptoms, and their lower compliance was caused by a decrease in disease avoidance (indirect effect = -0.058, 95% CI = [-0.061, -0.056]) and familial motives (indirect effect = -0.113, 95% CI = [-0.116, -0.062]). Whereas exclusion concern (indirect effect = 0.014, 95% CI = [0.011, 0.017]) suppressed the effects of COVID-19 symptoms on compliance, the effect disappeared in the multiple mediation model, while those of disease avoidance and familial motives remained. Conclusion: Our findings emphasize the critical role of disease avoidance and familial motives in promoting compliance with public health norms during pandemics and suggest that enhancing these motives may serve as an effective intervention strategy to mitigate noncompliance among potentially infected individuals.

2.
Nano Res ; 15(5): 4191-4200, 2022.
Article in English | MEDLINE | ID: covidwho-1827135

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several antigenic variants, has grown into a global challenge, and the rapid establishment of an immune barrier is crucial to achieving long-term control of the virus. This has led to a great demand for easy preparation and scalable vaccines, especially in low-income countries. Here, we present an inhalable nanovaccine comprising chitosan and SARS-CoV-2 spike protein. The chitosan-mediated nanovaccine enabled a strong spike-specific antibody immune response and augmented local mucosal immunity in bronchoalveolar lavage and lungs, which might be capable of protecting the host from infection without systemic toxicity. In addition, the enhanced adaptive immunity stimulated by chitosan showed potential protection against SARS-CoV-2. Furthermore, inhalation of the nanovaccine induced a comparable antibody response compared to intramuscular injection. This inhalable nanovaccine against SARS-CoV-2 offers a convenient and compliant strategy to reduce the use of needles and the need for medical staff. Electronic Supplementary Material: Supplementary material (the immune activation of CS-mediated nanovacccine on BMDCs, cell viability, immune responses in lungs and BALF, serum chemistry and H&E histopathological analysis.) is available in the online version of this article at 10.1007/s12274-021-4012-9.

3.
Chem Commun (Camb) ; 57(4): 504-507, 2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-983835

ABSTRACT

A novel STING agonist, CDGSF, ipsilaterally modified with phosphorothioate and fluorine, was synthesized. The phosphorothioate in CDGSF might be a site for covalent conjugation. Injection of CDGSF generated an immunogenic ("hot") tumor microenvironment to suppress melanoma, more efficiently than dithio CDG. In particular, immunization with SARS-CoV-2 spike protein using CDGSF as an adjuvant elicited an exceptionally high antibody titer and a robust T cell response, overcoming the drawbacks of aluminum hydroxide. These results highlighted the therapeutic potential of CDGSF for cancer immunotherapy and the adjuvant potential of the STING agonist in the SARS-CoV-2 vaccine for the first time.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Melanoma, Experimental/drug therapy , Membrane Proteins/agonists , Nucleotides, Cyclic/administration & dosage , Skin Neoplasms/drug therapy , Adjuvants, Immunologic/chemical synthesis , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/chemistry , Animals , Antibodies, Viral/biosynthesis , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/chemistry , Enzyme-Linked Immunospot Assay , Humans , Immunotherapy/methods , Interferon-gamma/biosynthesis , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Nucleotides, Cyclic/chemical synthesis , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Survival Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology , Tumor Burden/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL